Bottom-up Parsing

Top-down versus Bottom-up Parsing

* Top down:
- Recursive descent parsing
- LL(k) parsing
\square Top to down and leftmost derivation
- Expanding from starting symbol (top) to gradually derive the input string
\square Can use a parsing table to decide which production to use next
\square The power is limited
- Many grammars are not LL(k)
- Left recursion elimination and left factoring can help make many grammars LL(k), but after rewriting, the grammar can be very hard to comprehend
\square Space efficient
\square Easy to build the parse tree

Top-down versus Bottom-up Parsing

* Bottom up:
\square Also known as shift-reduce parsing
- LR family
- Precedence parsing
\square Shift: allow shifting input characters to the stack, waiting till a matching production can be determined
\square Reduce: once a matching production is determined, reduce
\square Follow the rightmost derivation, in a reversed way
- Parse from bottom (the leaves of the parse tree) and work up to the starting symbol
\square Due to the added "shift"
\Rightarrow More powerful
- Can handle left recursive grammars and grammars with left factors
\Rightarrow Less space efficient

Basic Concepts

* How to build a predictive bottom-up parser?
* Sentential form
\square For a grammar G with start symbol S
A string α is a sentential form of G if $\mathrm{S} \Rightarrow^{*} \alpha$
- α may contain terminals and nonterminals
- If α is in T^{*}, then α is a sentence of $\mathrm{L}(\mathrm{G})$
\square Left sentential form: A sentential form that occurs in the leftmost derivation of some sentence
\square Right sentential form: A sentential form that occurs in the rightmost derivation of some sentence

Basic Concepts

* Example of the sentential form
$\square \mathrm{E} \rightarrow \mathrm{E} * \mathrm{E}|\mathrm{E}+\mathrm{E}| \mathrm{E}) \mid \mathrm{id}$
\square Leftmost derivation:

$$
\begin{aligned}
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{E} * \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{id} * \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{id} * \mathrm{id}+\mathrm{E} \Rightarrow \\
\mathrm{id} * \mathrm{id}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{id}^{*} \mathrm{id}+\mathrm{id} * \mathrm{E} \Rightarrow \mathrm{id} * \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{aligned}
$$

- All the derived strings are of the left sentential form
\square Rightmost derivation

$$
\begin{array}{r}
\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} * \mathrm{id} \Rightarrow \mathrm{E}+\mathrm{id} * \mathrm{id} \Rightarrow \\
\mathrm{E} * \mathrm{E}+\mathrm{id} * \mathrm{id} \Rightarrow \mathrm{E} * \mathrm{id}+\mathrm{id} * \mathrm{id} \Rightarrow \mathrm{id} * \mathrm{id}+\mathrm{id} * \mathrm{id}
\end{array}
$$

- All the derived strings are of the right sentential form
* Another example
$\square \mathrm{S} \rightarrow \mathrm{AB}, \mathrm{A} \rightarrow \mathrm{CD}, \mathrm{B} \rightarrow \mathrm{EF}$
$\square S \Rightarrow A B \Rightarrow C D B$
$\square \mathrm{S} \Rightarrow \mathrm{AB} \Rightarrow \mathrm{AEF}$

Basic Concepts

* Handle
\square Given a rightmost derivation

$$
\mathrm{S} \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{\mathrm{k}}(\alpha \mathrm{Aw}) \Rightarrow \gamma_{\mathrm{k}+1}(\alpha \beta \mathrm{w}) \Rightarrow \ldots \Rightarrow \gamma_{\mathrm{n}}
$$

- γ_{i}, for all i , are the right sentential forms
- From γ_{k} to γ_{k+1}, production $\mathrm{A} \rightarrow \beta$ is used
\square A handle of $\gamma_{k+1}(=\alpha \beta w)$ is
- the production $\mathrm{A} \rightarrow \beta$ and the position of β in γ_{k+1}
- Informally, β is the handle

The handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

Basic Concepts

* Theorem

If G is unambiguous, then every right-sentential form has a unique handle

* Proof
- G is unambiguous
- \Rightarrow rightmost derivation is unique

Consider a right-sentential form γ_{k+1}

- \Rightarrow A unique production $A \rightarrow \beta$ is applied to γ_{k}, and applied at a unique position
- \Rightarrow A unique handle in $\gamma_{\mathrm{k}+1}$
* But

During the derivation, the production rule is unique
\square During the reduction, can we uniquely determine the production that was used during the derivation?

Basic Concepts

* Viable prefix
\square Prefix of a right-sentential form, do not pass the end of the handle \square E.g., $\alpha \beta$
- Or the prefix of $\alpha \beta$
* Example: $\mathrm{E} \rightarrow \mathrm{E} * \mathrm{E}|\mathrm{E}+\mathrm{E}|(\mathrm{E}) \mid \mathrm{id}$

The handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

Meaning of LR

* L: Process input from left to right
* R: Use rightmost derivation, but in reversed order
$* \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} * \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{E} * \mathrm{id} \Rightarrow \mathrm{E}+\mathrm{id} * \mathrm{id}$

$$
\Rightarrow \mathrm{E} * \mathrm{E}+\mathrm{id} * \mathrm{id} \Rightarrow \mathrm{E} * \mathrm{id}+\mathrm{id} * \mathrm{id} \Rightarrow \mathrm{id} * \mathrm{id}+\mathrm{id} * \mathrm{id}
$$

Bottom-up Parsing

* Traverse rightmost derivation backwards
\square If reduction is done arbitrarily
- It may not reduce to the starting symbol
- Need backtracking
\square By follow the path of rightmost derivation
- All the reductions are guaranteed to be "correct"
- Guaranteed to lead to the starting symbol without backtracking
\square That is: If it is always possible to correctly find the handle
* How to find the handle for reduction for each right sentential form
\square Use a stack to keep track of the viable prefix
\square The prefix of the handle will always be at the top of the stack

Bottom-up Parsing

* Consider a right-sentential form $\alpha \beta \mathrm{w}$
\square Where $\mathrm{A} \rightarrow \beta$ and β is a handle (let $\beta=\alpha^{\prime}$ 'w')
\square Right to β is always a subsentence (T^{*})

Bottom-up Parsing

* Shift-reduce operations in bottom-up parsing
\square Shift the input into the stack
- Wait for the current handle to complete or to appear
- Or wait for a handle that may complete later
\square Reduce
- Once the handle is completely in the stack, then reduce
\square The operations are determined by the parsing table
* Parsing table includes
\square Action table
- Determine the action of shift or reduce
- To shift (current handle is not completely or not yet in stack)
- To reduce (current handle is completely in stack)
\square Goto table
- Determine which state to go to next

Parsing Table

* Idea
\square Build a finite automata based on the grammar
\square Follow the automata to construct the parsing tables
* Characteristic finite state automata (CFSA)
\square Is the basis for building the parsing table
- But the automata is not a part of the parsing table
\square States of the automata
- Each state is represented by a set of $\operatorname{LR}(0)$ items
o To keep track of what has already been seen (already in the stack)
- In other words, keep track of the viable prefix
o To track the possible productions that may be used for reduction
\square State transitions
- Fired by grammar symbols (terminals or nonterminals)

Build the Automata

* LR(0) Item of a grammar G
\square Is a production of G with a distinguished position
\square Position is used to indicate how much of the handle has already been seen (in the stack)
- For production $S \rightarrow$ a B S, items for it include
$S \rightarrow \bullet$ a B S
$S \rightarrow a \bullet B S$
$S \rightarrow$ a B • S
$S \rightarrow$ a B S •
o Left of • are the parts of the handle that has already been seen
o When • reaches the end of the handle \Rightarrow reduction
- For production $S \rightarrow \varepsilon$, the single item is

$$
\mathrm{S} \rightarrow \bullet
$$

Building the Automata

* Closure function Closure(I)
\square I is a set of items for a grammar G
\square Every item in I is in Closure(I)
\square If $\mathrm{A} \rightarrow \alpha \bullet \mathrm{B} \beta$ is in Closure(I) and $\mathrm{B} \rightarrow \gamma$ is a production in G Then add $\mathrm{B} \rightarrow \bullet \gamma$ to Closure(I)
- If it is not already there
- Meaning
o When α is in the stack and B is expected next
o One of the B-production rules may be used to reduce the input to B
- May not be one-step reduction though
\square Apply the rule until no more new items can be added

Building the Automata

* Goto function Goto(I,X)
$\square \mathrm{X}$ is a grammar symbol
If $\mathrm{A} \rightarrow \alpha \bullet \mathrm{X} \beta$ is in I then $\mathrm{A} \rightarrow \alpha \mathrm{X} \bullet \beta$ is in Goto(I, X$)$
- Let J denote the set constructed by this step

All items in Closure(J) are in Goto(I, X)
\square Meaning

- If I is the set of valid items for some viable prefix γ
- Then goto(I, X) is the set of valid items for the viable prefix $\gamma \mathrm{X}$

Building the Automata

* Augmented grammar
$\square G$ is the grammar and S is the staring symbol
Construct G^{\prime} by adding production $\mathrm{S}^{\prime} \rightarrow \mathrm{S}$ into G
- S^{\prime} is the new starting symbol
- E.g.: $G: S \rightarrow \alpha\left|\beta \Rightarrow G^{\prime}: S^{\prime} \rightarrow S, S \rightarrow \alpha\right| \beta$
\square Meaning
- The starting symbol may have several production rules and may be used in other non-terminal's production rules
- Add $S^{\prime} \rightarrow$ S to force the starting symbol to have a single production
- When $S^{\prime} \rightarrow S \bullet$ is seen, it is clear that parsing is done

Building the Automata

* Given a grammar G
\square Step 1: augment G
\square Step 2: initial state
- Construct the valid item set "I" of State 0 (the initial state)
- Add S’ \rightarrow • S into I
o All expansions have to start from here
- Compute Closure(I) as the complete valid item set of state 0
o All possible expansions S can lead into
\square Step 3:
- From state I, for all grammar symbol X

Construct J = Goto(I, X)
Compute Closure(J)

- Create the new state with the corresponding Goto transition
o Only if the valid item set is non-empty and does not exist yet
\square Repeat Step 3 till no new states can be derived

Building the Automata -- Example

* Grammar G:

$$
\begin{aligned}
& S \rightarrow E \\
& E \rightarrow E+T \mid T \\
& T \rightarrow i d \mid(E)
\end{aligned}
$$

\square Step 1: Augment G

$$
S^{\prime} \rightarrow S \quad S \rightarrow E \quad E \rightarrow E+T|T \quad T \rightarrow i d|(E)
$$

\square Step 2:

- Construct Closure $\left(\mathrm{I}_{0}\right)$ for State $0 \quad$ Expect to see S next
- First add into $\mathrm{I}_{0}: \mathrm{S}^{\prime} \rightarrow \bullet \mathrm{S}$
- Compute Closure $\left(\mathrm{I}_{0}\right)$

$$
\begin{aligned}
& \mathrm{S}^{\prime} \rightarrow \bullet \mathrm{S} \quad \mathrm{~S} \rightarrow \bullet \mathrm{E} \\
& \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T} \quad \mathrm{E} \rightarrow \bullet \mathrm{~T} \\
& \mathrm{~T} \rightarrow \bullet \mathrm{id} \quad \mathrm{~T} \rightarrow \bullet(\mathrm{E})
\end{aligned}
$$

Building the Automata -- Example

Step 3
$\square \mathrm{I}_{1}$

- Add into $\mathrm{I}_{1}: \operatorname{Goto}\left(\mathrm{I}_{0}, \mathrm{~S}\right)=\mathrm{S}^{\prime} \rightarrow \mathrm{S} \bullet$
- No new items to be added to Closure (I_{1})

$$
\begin{aligned}
& \mathrm{I}_{0}: \\
& \mathrm{S}^{\prime} \rightarrow \bullet \mathrm{S} \quad \mathrm{~S} \rightarrow \bullet \mathrm{E} \\
& \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T} \quad \mathrm{E} \rightarrow \bullet \mathrm{~T} \\
& \mathrm{~T} \rightarrow \bullet \text { id } \quad \mathrm{T} \rightarrow \bullet(\mathrm{E})
\end{aligned}
$$

$\square \mathrm{I}_{2}$

- Add into $\mathrm{I}_{2}: \operatorname{Goto}\left(\mathrm{I}_{0}, \mathrm{E}\right)=\mathrm{S} \rightarrow \mathrm{E} \bullet \quad \mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}$
- No new items to be added to Closure (I_{2})
$\square I_{3}$
- Add into $\mathrm{I}_{3}: \operatorname{Goto}\left(\mathrm{I}_{0}, \mathrm{~T}\right)=\mathrm{E} \rightarrow \mathrm{T} \bullet$
- No new items to be added to Closure $\left(\mathrm{I}_{3}\right)$
$\square \mathrm{I}_{4}$
- Add into $\mathrm{I}_{4}: \operatorname{Goto}\left(\mathrm{I}_{0}, \mathrm{id}\right)=\mathrm{T} \rightarrow \mathrm{id} \bullet$
- No new items to be added to Closure $\left(\mathrm{I}_{4}\right)$

When E is moved to the stack (after a reduction), these two are the possible handles
$\mathrm{S} \rightarrow \mathrm{E} \bullet$ implies a reduction is to be done
o should be done if seeing Follow(S)
$\mathrm{E} \rightarrow \mathrm{E} \bullet+$ T implies + is expected to be the next in]

Building the Automata -- Example

Step 3
$\square I_{5}$

$$
\begin{aligned}
& \mathrm{I}_{0}: \\
& \mathrm{S} \rightarrow \rightarrow \bullet \mathrm{~S} \quad \mathrm{~S} \rightarrow \bullet \mathrm{E} \\
& \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T} \quad \mathrm{E} \rightarrow \bullet \mathrm{~T}
\end{aligned}
$$

- Add into $\mathrm{I}_{5}: \operatorname{Goto}\left(\mathrm{I}_{0}, "(")=\mathrm{T} \rightarrow(\bullet \mathrm{E}) \quad \mathrm{T} \rightarrow \bullet\right.$ id $\quad \mathrm{T} \rightarrow \bullet(\mathrm{E})$
- Closure (I_{5})

$$
\begin{aligned}
& \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T} \quad \mathrm{E} \rightarrow \bullet \mathrm{~T} \\
& \mathrm{~T} \rightarrow \bullet \mathrm{id} \quad \mathrm{~T} \rightarrow \bullet(\mathrm{E})
\end{aligned}
$$

\square No more moves from I_{0}
\square No possible moves from I_{1}

> | After seeing (, we expect E next |
| :--- |
| E could be reduced from other |
| E-production rules |
| So, put E-productions in the set | $\square \mathrm{I}_{6}$

- Add into $\mathrm{I}_{6}: \operatorname{Goto}\left(\mathrm{I}_{2},+\right)=\mathrm{E} \rightarrow \mathrm{E}+\bullet \mathrm{T}$
- Closure $\left(\mathrm{I}_{5}\right)$

$$
\mathrm{T} \rightarrow \bullet \mathrm{id} \quad \mathrm{~T} \rightarrow \bullet(\mathrm{E})
$$

\square No possible moves from I_{3} and I_{4}

Building the Automata -- Example

* Step 3
$\square \mathrm{I}_{7}$
- Add into $\mathrm{I}_{7}: \operatorname{Goto}\left(\mathrm{I}_{5}, \mathrm{E}\right)=$

$$
\mathrm{T} \rightarrow(\mathrm{E} \bullet) \quad \mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}
$$

- No new items to be added to Closure (I_{7})
$\square \operatorname{Goto}\left(\mathrm{I}_{5}, \mathrm{~T}\right)=\mathrm{I}_{3}$
$\square \operatorname{Goto}\left(\mathrm{I}_{5}, \mathrm{id}\right)=\mathrm{I}_{4}$
$\square \operatorname{Goto}\left(\mathrm{I}_{5}, "(")=\mathrm{I}_{5}\right.$
\square No more moves from I_{5}
$\square \mathrm{I}_{8}$
- Add into $\mathrm{I}_{8}: \operatorname{Goto}\left(\mathrm{I}_{6}, \mathrm{~T}\right)=\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \bullet$
- No new items to be added to Closure $\left(\mathrm{I}_{8}\right)$
$\square \operatorname{Goto}\left(\mathrm{I}_{6}, \mathrm{id}\right)=\mathrm{I}_{4}$
$\square \operatorname{Goto}\left(\mathrm{I}_{6}, "(")=\mathrm{I}_{5}\right.$

Building the Automata -- Example

* Step 3
$\square \mathrm{I}_{9}$
- Add into $\left.\mathrm{I}_{9}: \operatorname{Goto}\left(\mathrm{I}_{7}, "\right) "\right)=$ $\mathrm{T} \rightarrow$ (E) •
- No new items to be added to Closure $\left(\mathrm{I}_{9}\right)$
$\square \operatorname{Goto}\left(I_{7},+\right)=I_{6}$
\square No possible moves from I_{8} and I_{9}

Building the Automata -- Example

Building the Automata -- Example

Stack	Input	Action
0	id + id \$	S4
0 id 4	+ id \$	$\begin{aligned} & \mathrm{T} \rightarrow \mathrm{id}, \\ & \text { Goto }[0, \mathrm{~T}]=3 \end{aligned}$
0 T 3	+ id \$	$\begin{aligned} & \mathrm{E} \rightarrow \mathrm{~T}, \\ & \text { Goto[0, } \mathrm{E}]=2 \end{aligned}$
0 E 2	+ id \$	s6
0 E $2+6$	id \$	S4
0 E $2+6$ id 4	\$	$\begin{aligned} & \mathrm{T} \rightarrow \mathrm{id}, \\ & \text { Goto[6,T]=8 } \end{aligned}$
0E2+6T8	\$	$\begin{aligned} & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}, \\ & \operatorname{Goto}[0, \mathrm{E}]=2 \end{aligned}$
0 E 2	\$	$\begin{aligned} & \mathrm{S} \rightarrow \mathrm{E}, \\ & \operatorname{Goto}[0, \mathrm{~S}]=1 \end{aligned}$
OS 1	\$	accept

Building the Parsing Table

* Action [M, N]
- M states
- N tokens
- Actions =
- Shift i: shift the input token into the stack and got to state i
- Reduce i: reduce by the i-th production $\alpha \rightarrow \beta$
- Accept
- Error
* Goto [M, L]
- M states
- L non-terminals
\square Goto $[\mathrm{i}, \mathrm{j}]=\mathrm{x}$
- Move to state S_{x}

Building the Action Table

* If state I_{i} has item $\mathrm{A} \rightarrow \alpha \bullet \mathrm{a} \beta$, and
$\square \operatorname{Goto}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{a}\right)=\mathrm{I}_{\mathrm{j}}$
I Next symbol in the input is a
* Then Action $\left[\mathrm{I}_{\mathrm{i}}, \mathrm{a}\right]=\mathrm{I}_{\mathrm{j}}$
[Meaning: Shift "a" to the stack and move to state I_{j}
- Need to wait for the handle to appear or to complete
* If State I_{i} has item $\mathrm{A} \rightarrow \alpha \bullet$
* Then Action[S, b] = reduce using $\mathrm{A} \rightarrow \alpha$
- For all b in Follow(A)
- Meaning: The entire handle α is in the stack, need to reduce
- Need to wait to see Follow(A) to know that the handle is ready
- E.g. $\mathrm{S} \rightarrow \mathrm{E} \bullet \mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}$
- Current input can be either Follow(S) or +

Building the Action Table

* If state has $S^{\prime} \rightarrow S_{0} \bullet$
* Then Action[S, \$] = accept
* Current state
\square The action to be taken depends on the current state
- In LL, it depends on the current non-terminal on the top of the stack
- In LR, non-terminal is not known till reduction is done
\square Who is keeping track of current state?
\square The stack
- Need to push the state also into the stack
- The stack includes the viable prefix and the corresponding state for each symbol in the viable prefix

Building the Goto Table

* If $\operatorname{Goto}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{A}\right)=\mathrm{I}_{\mathrm{j}}$
* Then Goto[i, A] = j
* Meaning
\square When a reduction $\mathrm{X} \rightarrow \alpha$ taken place
The non-terminal X is added to the stack replacing α
- What should the state be after adding X
- This information is kept in Goto table

Building the Parsing Table -- Example

Follow $(S)=\{\$\}$
Follow(E) $=\{+$, ,,$\$\}$
Follow (T) = $\{+$, , $\$\}$

	+	id	$($	$)$	$\$$	S	E	T
0		4	5			1	2	3
1					Acc			
2	6				$\mathrm{~S} \rightarrow \mathrm{E}$			
3	$\mathrm{E} \rightarrow \mathrm{T}$			$\mathrm{E} \rightarrow \mathrm{T}$	$\mathrm{E} \rightarrow \mathrm{T}$			
4	$\mathrm{~T} \rightarrow \mathrm{~A}$		4	5				7
5		4	5					8
6		4		9				
7	6			$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$	$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$			
8	$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$			$\mathrm{T} \rightarrow(\mathrm{E})$	$\mathrm{T} \rightarrow(\mathrm{E})$			
9	$\mathrm{~T} \rightarrow(\mathrm{E})$							

LR Parsing Algorithm

* Elements
\square Parser, parsing tables, stack, input
* Initialization
\square Append the $\$$ at the end of the input
\square Push state 0 into the stack
- On the top of the stack, it is always a state
- It is the current state of parsing

LR Parsing Algorithm

Steps

\square If Action $[x, a]=y$

- x is the current state, on the top of the stack
- a is the input token
\square Then shift a into the stack and put y on top of the stack
\square If Action $[x, a]=\mathrm{A} \rightarrow \alpha$
- Note that a is in Follow(A)
\square Then
- x is the current state, on the top of the stack
- Pop the handle α and all the state corresponding to α out of the stack
- y is the state on the top of the stack after popping
- Check Goto table, if Goto[y, A] = z
- Push A and then z into the stack

LR Parsing - Example

	+	id	$($	$)$	$\$$	S	E	T
0		4	5			1	2	3
1					Acc			
2	6				$\mathrm{~S} \rightarrow \mathrm{E}$			
3	$\mathrm{E} \rightarrow \mathrm{T}$			$\mathrm{E} \rightarrow \mathrm{T}$	$\mathrm{E} \rightarrow \mathrm{T}$			
4	$\mathrm{~T} \rightarrow \mathrm{id}$			$\mathrm{T} \rightarrow \mathrm{id}$	$\mathrm{T} \rightarrow \mathrm{id}$			
5		4	5				7	3
6		4	5					8
7	6			9				
8	$\mathrm{E} \rightarrow \mathrm{E}+$							

Rightmost derivation:
$\mathrm{S} \Rightarrow \mathrm{E} \Rightarrow \mathrm{E}+\mathrm{T} \Rightarrow \mathrm{E}+\mathrm{id} \Rightarrow \mathrm{T}+\mathrm{id} \Rightarrow \mathrm{id}+\mathrm{id}$

Stack	Input	Action
0	id + id \$	S4
0 id 4	+ id \$	$\begin{aligned} & \mathrm{T} \rightarrow \mathrm{id}, \\ & \text { Goto }[0, \mathrm{~T}]=3 \end{aligned}$
0 T 3	+ id \$	$\begin{aligned} & \mathrm{E} \rightarrow \mathrm{~T}, \\ & \text { Goto[0,E]=2 } \end{aligned}$
0 E 2	+ id \$	s6
0 E $2+6$	id \$	S4
$0 \mathrm{E} 2+6$ id 4	\$	$\begin{aligned} & \mathrm{T} \rightarrow \mathrm{id}, \\ & \text { Goto }[6, \mathrm{~T}]=8 \end{aligned}$
$0 \mathrm{E} 2+6 \mathrm{~T} 8$	\$	$\begin{aligned} & \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}, \\ & \text { Goto }[0, \mathrm{E}]=2 \end{aligned}$
0 E 2	\$	$\begin{aligned} & S \rightarrow E, \\ & \operatorname{Goto}[0, S]=1 \end{aligned}$
0 S 1	\$	accept

Reverse trace back:
Reduce left most input first.

SLR Parsing

* LR
\square L: input scanned from left
$\square \mathrm{R}$: traverse the rightmost derivation path
* LR(0) = SLR(1)
\square The LR parser we discussed is $\operatorname{LR}(0)$
- 0 in LR: lookahead symbol with the item (will be clear later)
$\square \operatorname{LR}(0)$ is also called $\operatorname{SLR}(1)$
- Simple LR
- 1 in SLR: lookahead symbol

SLR and LL

Example:

$$
\begin{aligned}
& A \rightarrow A a \mid a \\
& \operatorname{Follow}(A)=\{a, \$\}
\end{aligned}
$$

	a	$\$$	A
0	3		1
1	2		
2	$\mathrm{~A} \rightarrow \mathrm{Aa}$	$\mathrm{A} \rightarrow \mathrm{Aa}$	
3	$\mathrm{~A} \rightarrow \mathrm{a}$	$\mathrm{A} \rightarrow \mathrm{a}$	

- Not LL
- Left recursive grammar
\square But is $\operatorname{SLR}(1)$
- First a got reduced to A

Stack	Input	Action
0	aaa\$	S3
0a3	aa\$	$\begin{aligned} & \mathrm{A} \rightarrow \mathrm{a}, \\ & \operatorname{Goto}[0, \mathrm{~A}]=1 \end{aligned}$
0A1	aa\$	S2
0A1a2	a\$	$\begin{aligned} & \mathrm{A} \rightarrow \mathrm{Aa} \\ & \mathrm{Goto}[0, \mathrm{~A}]=1 \end{aligned}$
0A1	a\$	S2
0A1a2	\$	$\begin{aligned} & \mathrm{A} \rightarrow \mathrm{Aa} \\ & \mathrm{Goto}[0, \mathrm{~A}]=1 \end{aligned}$
0A1	\$	

- The remaining a's got reduced with the already generated $\mathrm{A}(\mathrm{Aa})$
- In LR, it is reduction based, when seeing ' a ’, ' $A \rightarrow a$ ' is the only choice, after there are A , then reduce Aa by $\mathrm{A} \rightarrow \mathrm{Aa}$

SLR and LL

- Example:
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{a}$
Follow $(A)=\{\$\}$
\square Not LL(1)

	a	$\$$	A	
	0	1		
	1	1	$\mathrm{~A} \rightarrow \mathrm{a}$	2
	2		$\mathrm{~A} \rightarrow \mathrm{aA}$	

Unclear accepting state
The input string is actually acceptable If $[0, \$]$ is accept, will accept ε
If [0,\$] is accept, wi
A have left factors

- Productions for A have left factors
\square But is $\operatorname{SLR}(1)$
- All 'a’s got shifted to stack
- Final 'a’, seeing \$, got reduced to 'A'
- All 'a’s in stack got reduced with newly generated 'A’s

SLR and LL

Example:

	$S \rightarrow \mathrm{Ax} \mid \mathrm{By}$	Follow(S) =	0a3	aax\$	S3
	$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{a}$	$\text { Follow }(\mathrm{A})=\{\mathrm{x}$	0a3a3	ax\$	S1
	$\mathrm{B} \rightarrow \mathrm{aB} \mid \mathrm{a}$	Follow $(\mathrm{B})=\{\mathrm{y}$	0a3a3a3	x\$	$A \rightarrow a$ Goto[3,A]=6
I_{0}	$\begin{gathered} \mathrm{I}_{1} \\ \qquad \mathrm{~S} \rightarrow \mathrm{~A} \bullet \mathrm{x} \end{gathered}$	$\rightarrow \mathrm{S} \rightarrow \mathrm{Ax} \bullet \mathrm{I}_{4}$	0a3a3A6	x\$	$\mathrm{A} \rightarrow \mathrm{aA}$ Goto[3,A]=6
$\mathrm{S} \rightarrow \bullet \mathrm{Ax}$	S $\mathrm{S}^{\text {B } \cdot \mathrm{y}}$	$\rightarrow \mathrm{S} \rightarrow \mathrm{By} \bullet \mathrm{I}_{5}$	0a3A6	x\$	same as above
$\mathrm{A} \rightarrow \bullet \mathrm{aA}$	A ${ }^{\text {a }} \mathrm{a}$ •A		0A1	x\$	S4
$\mathrm{A} \rightarrow \bullet \mathrm{a}$	$\mathrm{A} \rightarrow \mathrm{a} \bullet$	$\mathrm{A} \rightarrow \mathrm{aA} \bullet \mathrm{I}_{6}$	0A1x4	\$	$S \rightarrow$ Ax
$\begin{aligned} & \mathrm{B} \rightarrow \bullet \mathrm{aB} \\ & \mathrm{~B} \rightarrow \bullet \mathrm{a} \end{aligned}$	$V \begin{aligned} & \mathrm{B} \rightarrow \mathrm{a} \bullet \mathrm{B} \\ & \mathrm{B} \rightarrow \mathrm{a} \bullet\end{aligned}$		OS	\$	
	$\begin{aligned} & \mathrm{A} \rightarrow \bullet \mathrm{a} \\ & \mathrm{~B} \rightarrow \bullet \mathrm{aB} \\ & \mathrm{~B} \rightarrow \bullet \mathrm{a} \end{aligned}$	Potential reduce But follow(A) an are different	onflict (B)		ccepting state appear at and side to info

SLR and LL

* Continue with the example:
$S \rightarrow \mathrm{Ax} \mid \mathrm{By}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{aB} \mid \mathrm{a}$
- Not LL(k)
- $S \rightarrow A x$ and $S \rightarrow$ By, First(Ax) and First(By) are 'a'
- Even with large k, First ${ }_{k}$ of both will have "aa...a"
\square Is SLR(1)
- No problem with $\mathrm{A} \rightarrow \mathrm{aA}$ and $\mathrm{A} \rightarrow$ a, they lead to different states
- No problem with $\mathrm{A} \rightarrow \mathrm{a}$ and $\mathrm{B} \rightarrow \mathrm{a}$, just go back to the same state
$\mathrm{o} \Rightarrow$ During parsing, ' a ' continuously got shifted into the stack
o When x or y appears, reduce
- By that time, it is clear which rule to use for reduction
- $\operatorname{Follow}(A)=\{x\}$, if seeing x, reduce with $A \rightarrow a$
- Follow $(B)=\{y\}$, if seeing y, reduce with $B \rightarrow a$

SLR and LL

* Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Ax} \mid \mathrm{By} \\
& \mathrm{~A} \rightarrow \mathrm{Aa} \mid \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{Ba} \mid \mathrm{a}
\end{aligned}
$$

Stack	Input	Action
0	aaax\$	S3
0a3	aax\$	Reduction Multiple productions

Have to make decision too soon,
right at the first ' a '

Follow $(S)=\{\$\}$
Follow $(A)=\{x, a\}$
Follow $(B)=\{y, a\}$

SLR and LL

* Continue with the example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Ax} \mid \mathrm{By} \\
& \mathrm{~A} \rightarrow \mathrm{Aa} \mid \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{Ba} \mid \mathrm{a}
\end{aligned}
$$

- Not LL
- $S \rightarrow A x$ and $S \rightarrow B y$, First(Ax) and First(By) are 'a'
- Even with large k, First ${ }_{k}$ of both A and B will have "aa...a" (A and B are both in S's productions)
\square Not SLR either
- Not SLR(k), for any k
- Even with large k, Follow ${ }_{k}$ of both A and B will have "aa....a"

SLR and LL

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow(\mathrm{X} \mid[\mathrm{Y} \\
& \mathrm{X} \rightarrow \mathrm{~A}) \mid \mathrm{B}] \\
& \mathrm{Y} \rightarrow \mathrm{~A}] \mid \mathrm{B}) \\
& \mathrm{A} \rightarrow \varepsilon \\
& \mathrm{~B} \rightarrow \varepsilon
\end{aligned}
$$

\square Not SLR(1)

\square Is LL(1)

> The rules of each nonterminal have different first symbols $\mathrm{A} \rightarrow \varepsilon$ and $\mathrm{B} \rightarrow \varepsilon$ are from different nonterminals
$\operatorname{First}(\mathrm{A})=\{\varepsilon\}$
First(B) $=\{\varepsilon\}$
$\operatorname{First}(\mathrm{X})=\{\varepsilon),]$,
$\operatorname{First}(\mathrm{Y})=\{\varepsilon),]$,
First(S) $=\{(,[\}$

	$($	$[$	$)$	$]$	$\$$
S	$\mathrm{~S} \rightarrow(\mathrm{X}$	$\mathrm{S} \rightarrow[\mathrm{Y}$			
X			$\mathrm{X} \rightarrow \mathrm{A})$	$\mathrm{X} \rightarrow \mathrm{B}]$	
Y			$\mathrm{Y} \rightarrow \mathrm{B})$	$\mathrm{Y} \rightarrow \mathrm{A}]$	
A			$\mathrm{A} \rightarrow \varepsilon$	$\mathrm{A} \rightarrow \varepsilon$	
B			$\mathrm{B} \rightarrow \varepsilon$	$\mathrm{B} \rightarrow \varepsilon$	

SLR Parser Family

* Consider grammar G
$\mathrm{S} \rightarrow \mathrm{Abc\mid Bbd}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{a}$

$\square G$ is $\operatorname{SLR}(2)$
- Lookahead two characters will resolve the conflict
- Follow $_{2}(A)=\{b c\}$, Follow $_{2}(B)=\{b d\}$
- Action[4, bc] $=\mathrm{A} \rightarrow \mathrm{a}$
- Action[4, bd] $=\mathrm{B} \rightarrow \mathrm{a}$

SLR Parser Family

* Consider grammar G
$\mathrm{S} \rightarrow \mathrm{Ab}^{\mathrm{k}-1} \mathrm{c} \mid \mathrm{Bb}^{\mathrm{k}-1} \mathrm{~d}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{a}$
$\square \mathrm{G}$ is $\operatorname{SLR}(\mathrm{k})$ not $\operatorname{SLR}(\mathrm{k}-1)$
- Need to lookahead k characters in the Follow set
- Follow $_{k-1}(A)=\left\{b^{k-1}\right\}$, Follow $_{k-1}(B)=\left\{b^{k-1}\right\}$
- Follow $_{k}(A)=\left\{b^{k-1} c\right\}$, Follow $_{k}(B)=\left\{b^{k-1} d\right\}$

SLR and LR

* Consider grammar G

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{~L}=\mathrm{R} \\
& \mathrm{~S} \rightarrow \mathrm{R} \\
& \mathrm{R} \rightarrow \mathrm{~L} \\
& \mathrm{~L} \rightarrow \mathrm{R}^{2} \\
& \mathrm{~L} \rightarrow \mathrm{id}
\end{aligned}
$$

SLR and LR

* Grammar G has shift-reduce conflict
\square Not helpful by looking further ahead the Follow set
- Follow $_{\mathrm{k}}(\mathrm{L})=\{\$,=\mathrm{id} \$,=* \mathrm{id} \$,=* * \mathrm{id} \$, \ldots,=* \ldots * \mathrm{id} \$,=* \ldots * \mathrm{id}$, =*...*\}
- Follow $_{k}(\mathrm{R})=$ Follow $_{\mathrm{k}}(\mathrm{L})$
\Rightarrow This is not $\operatorname{SLR}(\mathrm{k})$
o Further lookahead will not help with distinguishing Follow $_{k}(\mathrm{R})$ from Follow ${ }_{k}(\mathrm{~L})$

SLR and LR

* What is the problem?
\square Lookahead information is too crude
\square Need to distinguish
- If $\mathrm{L} \rightarrow * \mathrm{R}$ is from $\mathrm{S} \Rightarrow \mathrm{L}=\mathrm{R} \Rightarrow * \mathrm{R}=\mathrm{R}$, then $\operatorname{Follow}(\mathrm{R})=\{=, \$\}$
- If $\mathrm{L} \rightarrow * \mathrm{R}$ is from $\mathrm{S} \Rightarrow \mathrm{R} \Rightarrow \mathrm{L} \Rightarrow * \mathrm{R}$, then Follow $(\mathrm{R})=\{\$\}$
* Solution:
\square Carry the specific lookahead information with the LR(0) item
\square The item becomes LR(1) item
\square Use the lookahead symbol(s) with the item to identify the correct reduction rule to apply
* Canonical LR Parsing
\square The parsing scheme based on LR(1) item

LR(1) Item

* LR(1) Item of a grammar G
$\square[A \rightarrow \alpha \bullet \beta$, a]
$\square \mathrm{A} \rightarrow \alpha \bullet \beta$ is an $\operatorname{LR}(0)$ item
\square a is the lookahead symbol (a terminal in Follow(A))
[$\mathrm{A} \rightarrow \alpha \bullet$, a] implies
- $\mathrm{S} \Rightarrow * \delta \mathrm{~A} \gamma \Rightarrow \delta \alpha \gamma$
- a is in First($(\$)$
- I.e., "a" follows A in a right sentential form
* When $[\mathrm{A} \rightarrow \alpha \bullet, \mathrm{a}]$ is in the state
\Rightarrow Reduction (same as SLR)
But only if "a" is seen in the input string
Next, need to define Closure and Goto functions for LR(1) items

Building the Automata

* Changes to Closure(I)
\square If $\mathrm{A} \rightarrow \alpha \bullet \mathrm{B} \beta$ is in Closure(I) and $\mathrm{B} \rightarrow \gamma$ is a production in G Then add $\mathrm{B} \rightarrow \boldsymbol{\mathrm { \bullet }}$ to Closure(I)
\Rightarrow
\square If $[\mathrm{A} \rightarrow \alpha \bullet \mathrm{B} \beta$, a] is in Closure(I) and $\mathrm{B} \rightarrow \gamma$ is a production in G Then add [B $\rightarrow \boldsymbol{\mathrm { B }}, \mathrm{c}$] to Closure(I)
- For all c, c $\in \operatorname{First}(\beta a)$
* Changes to Goto(I,X)
\square If $\mathrm{A} \rightarrow \alpha \bullet \mathrm{X} \beta$ is in I then $\mathrm{A} \rightarrow \alpha \mathrm{X} \bullet \beta$ is in Goto(I, X$)$
\Rightarrow
\square If $[\mathrm{A} \rightarrow \alpha \bullet \mathrm{X} \beta$, a$]$ is in I then $[\mathrm{A} \rightarrow \alpha \mathrm{X} \bullet \beta, \mathrm{a}]$ is in $\operatorname{Goto}(\mathrm{I}, \mathrm{X})$
- Simply carry the lookahead symbol over

Building the Action Table

* If state has item [A $\rightarrow \alpha \bullet$ a β, b]
\square Add the shift action to the Action table (same as before)
* If state has [$\mathrm{S}^{\prime} \rightarrow \mathrm{S}_{0} \bullet, \$$]
\square Add accept to Action table (same as before)
* If State I_{i} has item [A $\rightarrow \alpha \bullet$, b]
\square Action[S, b] = reduce using $\mathrm{A} \rightarrow \alpha$
- Not for all terminals in Follow(A)
- Only for all terminals in the lookahead part of the item
* Goto table construction is the same as before

LR Parsing

LR Parsing

* The parsing algorithm is the same for the LR family
\square Only the table is different
* LR is more powerful

An SLR(1) grammar is always an $\operatorname{LR}(1)$, but not vice versa

- LR(1)
- Use one lookahead symbol in the item
- LR(k)
- Use k lookahead symbols in the item
$\square \mathrm{LR}(2)$ grammar
$\mathrm{S} \rightarrow \mathrm{Abc\mid Bbd}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{a}$
- SLR(2) also

LR Parsing

* LR is more powerful than SLR
* But LR has a larger number of states
\square Higher space consuming
- Common programming language has hundreds of states and hundreds of terminals
- Approximately 100 X 100 table size
\square Can the number of states in LR be reduced?
- Some states in LR are duplicated and can be merged
* LALR
\square LookAhead LR
\square Try to merge states in LR(1) automata
\square When the core items in two $\operatorname{LR}(1)$ states are the same
\Rightarrow merge them

LALR Parsing

LALR Parsing

* Can merging states introduce conflicts?
\square Cannot introduce shift-reduce conflict
\square May introduce reduce-reduce conflict
* Cannot introduce shift-reduce conflict?
\square Assume: two LR states I1, I2 are merged into an LALR state I
\square If conflict, I must have items
- $\quad[\mathrm{A} \rightarrow \alpha \bullet, \mathrm{a}]$ and $[\mathrm{B} \rightarrow \beta \bullet \mathrm{a} \delta, \mathrm{b}]$
o In fact, α and β have to be the same, otherwise, they won't come to the same state
- If they are from different states, they are different core items, cannot be merged into I
- If I1 has [A $\rightarrow \alpha \bullet$, a] and [B $\rightarrow \alpha \bullet$ b $\delta, \mathrm{c}]$ and I2 has [A $\rightarrow \alpha \bullet$, d] and [B $\rightarrow \alpha \bullet b \delta$, e]
o To have a conflict, we should have $b=d$ or $b=a$, shift-reduce conflicts were there in I1 and I2 already!

LALR Parsing

* Introducing reduce-reduce conflict?

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aAd}|\mathrm{bBd}| \mathrm{bAe} \mid \mathrm{aBe} \\
& \mathrm{~A} \rightarrow \mathrm{c}
\end{aligned} \quad \mathrm{~B} \rightarrow \mathrm{c}
$$

LALR Parsing

* Another LALR example

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{CC} \\
& \mathrm{C} \rightarrow \mathrm{cC} \\
& \mathrm{C} \rightarrow \mathrm{~d}
\end{aligned}
$$

First(C) $=\{c, d\}$
First $(S)=\{c, d\}$
Follow(S) $=\{\$\}$
Follow $(C)=\{c, d, \$\}$

LALR Parsing

* Delay error detection?
- $\mathrm{S} \rightarrow \mathrm{CC}, \mathrm{C} \rightarrow \mathrm{cC}, \mathrm{C} \rightarrow \mathrm{d}$
- Parse string ccd\$
- LR stack
- 0c3c3d5, seeing $\$ \Rightarrow$ reduce using $C \rightarrow$ d only if seeing $\{c, d\}$, not $\$$ \Rightarrow error

LALR Parsing

* Delay error detection?
\square LALR stack
- 0 c 3 c 3 d 5 , seeing $\$ \Rightarrow$ reduce using $\mathrm{C} \rightarrow \mathrm{d}$, goto 4 (0c3c3C4)
- 0c3c3C4, seeing $\$ \Rightarrow$ Reduce by $\mathrm{C} \rightarrow \mathrm{cC}$, goto 4 (0c3C4)
- 0 c 3 C 4 , seeing $\$ \Rightarrow$ Reduce by $\mathrm{C} \rightarrow \mathrm{cC}$, goto 2 (0 C 2)
- 0C2, seeing $\$ \Rightarrow$ error, only allow seeing c, d, C

LALR Parsing

* LALR

Can also be constructed using SLR procedure
\square But add lookahead symbols

* SLR, LR, LALR
\square LR is most powerful and SLR is least powerful
\square LALR(1) is most commonly used
- All reasonable languages are $\operatorname{LALR}(1)$
- Has the same number of states as $\operatorname{SLR}(1)$

Grammar Class Hierarchy

Bottom-up Parsing -- Summary

* Read textbook Sections 4.5-4.6
* Bottom-up Parsing
\square Handle and viable prefix
\square SLR parsing
- $\operatorname{SLR}(1)=\operatorname{LR}(0)$
- SLR(k)
\square Canonical LR Parsing
- LR(1)
- LR(k)
\square LALR

