
Bottom-up ParsingBottom-up Parsing

Top-down versus Bottom-up ParsingTop down versus Bottom up Parsing

Top down:
Recursive descent parsingRecursive descent parsing
LL(k) parsing

Top to down and leftmost derivation
Expanding from starting symbol (top) to gradually derive the inputExpanding from starting symbol (top) to gradually derive the input
string

Can use a parsing table to decide which production to use next
The power is limitedThe power is limited

Many grammars are not LL(k)
Left recursion elimination and left factoring can help make many
grammars LL(k) but after rewriting the grammar can be very hard togrammars LL(k), but after rewriting, the grammar can be very hard to
comprehend

Space efficient
Easy to build the parse treeEasy to build the parse tree

Top-down versus Bottom-up ParsingTop down versus Bottom up Parsing

Bottom up:
Also known as shift-reduce parsingAlso known as shift-reduce parsing

LR family
Precedence parsing

Shift: allow shifting input characters to the stack waiting till aShift: allow shifting input characters to the stack, waiting till a
matching production can be determined
Reduce: once a matching production is determined, reduce
F ll h i h d i i i dFollow the rightmost derivation, in a reversed way

Parse from bottom (the leaves of the parse tree) and work up to the
starting symbol

D h dd d “ hif ”Due to the added “shift”
⇒ More powerful

Can handle left recursive grammars and grammars with left factors
⇒ Less space efficient

Basic ConceptsBasic Concepts

How to build a predictive bottom-up parser?

Sentential form
For a grammar G with start symbol Sg y
A string α is a sentential form of G if S ⇒* α

α may contain terminals and nonterminals
If α is in T*, then α is a sentence of L(G)If α is in T , then α is a sentence of L(G)

Left sentential form: A sentential form that occurs in the leftmost
derivation of some sentence
Right sentential form: A sentential form that occurs in theRight sentential form: A sentential form that occurs in the
rightmost derivation of some sentence

Basic ConceptsBasic Concepts

Example of the sentential form
E → E * E | E + E | (E) | idE → E E | E + E | (E) | id
Leftmost derivation:

E ⇒ E + E ⇒ E * E + E ⇒ id * E + E ⇒ id * id + E ⇒
id * id + E * E id * id + id * E id * id + id * idid * id + E * E ⇒ id * id + id * E ⇒ id * id + id * id
All the derived strings are of the left sentential form

Rightmost derivation
E ⇒ E + E ⇒ E + E * E ⇒ E + E * id ⇒ E + id * id ⇒

E * E + id * id ⇒ E * id + id * id ⇒ id * id + id * id
All the derived strings are of the right sentential form

Another example
S → AB, A → CD, B → EF
S ⇒ AB ⇒ CDBS ⇒ AB ⇒ CDB
S ⇒ AB ⇒ AEF

Basic ConceptsBasic Concepts

Handle
Given a rightmost derivationGiven a rightmost derivation
S ⇒ γ1 ⇒ γ2 ⇒ … ⇒ γk (αAw) ⇒ γk+1 (αβw) ⇒ … ⇒ γn

γi, for all i, are the right sentential forms
F t d ti A β i dFrom γk to γk+1, production A → β is used

A handle of γk+1 (= αβw) is
the production A → β and
the position of β in γk+1

Informally, β is the handle

Basic ConceptsBasic Concepts

Theorem
If G is unambiguous then every right-sentential form has a uniqueIf G is unambiguous, then every right-sentential form has a unique
handle

Proof
G is unambiguous

⇒ rightmost derivation is unique
Consider a right-sentential form γk+1

⇒ A unique production A → β is applied to γk, and applied at a
unique position
⇒ A unique handle in γk+1

But
During the derivation, the production rule is unique
During the reduction can we uniquely determine the productionDuring the reduction, can we uniquely determine the production
that was used during the derivation?

Basic ConceptsBasic Concepts

Viable prefix
Prefix of a right-sentential form do not pass the end of the handlePrefix of a right-sentential form, do not pass the end of the handle
E.g., αβ

Or the prefix of αβ

lExample:
E
⇒ E + E Handles

E → E * E | E + E | (E) | id

⇒ E + E * E
⇒ E + E * id
⇒ E + id * id

D
eriv

Parsing (re

β

Viable
prefix

⇒ E * E + id * id
⇒ E * id + id * id
⇒ id * id + id * id

ation
eduction)

α β w

Meaning of LRMeaning of LR

L: Process input from left to right
R: Use rightmost derivation but in reversed orderR: Use rightmost derivation, but in reversed order
E ⇒ E + E ⇒ E + E * E ⇒ E + E * id ⇒ E + id * id
⇒ E * E + id * id ⇒ E * id + id * id ⇒ id * id + id * id⇒ E E + id id ⇒ E id + id id ⇒ id id + id id

E E E

E + E

E * EE * E

E + E

E * EE * E

E + E

E * E

id id id id id id id id id

Bottom-up ParsingBottom up Parsing

Traverse rightmost derivation backwards
If reduction is done arbitrarilyIf reduction is done arbitrarily

It may not reduce to the starting symbol
Need backtracking

By follow the path of rightmost derivationBy follow the path of rightmost derivation
All the reductions are guaranteed to be “correct”
Guaranteed to lead to the starting symbol without backtracking

Th i If i i l ibl l fi d h h dlThat is: If it is always possible to correctly find the handle

How to find the handle for reduction for each right
sentential form

Use a stack to keep track of the viable prefix
The prefix of the handle will always be at the top of the stack

Bottom-up ParsingBottom up Parsing

Consider a right-sentential form αβw
Where A → β and β is a handle (let β = α’w’)Where A → β and β is a handle (let β = α w)
Right to β is always a subsentence (T*)

$
Input tokens
’

αα’ is a viable prefixHandle β (= α’w’) from
the top of the stack and
the current input substring

w

Parser

$

stack
α’

w’ The knowledge for
recognizing β (or α’)
is built in the table

α

Parser table
$

Bottom-up ParsingBottom up Parsing

Shift-reduce operations in bottom-up parsing
Shift the input into the stackShift the input into the stack

Wait for the current handle to complete or to appear
Or wait for a handle that may complete later

ReduceReduce
Once the handle is completely in the stack, then reduce

The operations are determined by the parsing table

Parsing table includes
Action table

Determine the action of shift or reduce
To shift (current handle is not completely or not yet in stack)
To reduce (current handle is completely in stack)

Goto tableGoto table
Determine which state to go to next

Parsing TableParsing Table

Idea
Build a finite automata based on the grammarBuild a finite automata based on the grammar
Follow the automata to construct the parsing tables

Characteristic finite state automata (CFSA)
Is the basis for building the parsing table

But the automata is not a part of the parsing table
States of the automata

Each state is represented by a set of LR(0) items
o To keep track of what has already been seen (already in the stack)

- In other words, keep track of the viable prefix
o To track the possible productions that may be used for reduction

State transitions
Fired by grammar symbols (terminals or nonterminals)

Build the AutomataBuild the Automata

LR(0) Item of a grammar G
Is a production of G with a distinguished positionIs a production of G with a distinguished position
Position is used to indicate how much of the handle has already
been seen (in the stack)

For production S → a B S items for it includeFor production S → a B S, items for it include
S→ • a B S
S→ a • B S
S→ a B • SS→ a B • S
S→ a B S •

o Left of • are the parts of the handle that has already been seen
o When • reaches the end of the handle ⇒ reductiono When • reaches the end of the handle ⇒ reduction

For production S → ε, the single item is
S→ •

Building the AutomataBuilding the Automata

Closure function Closure(I)
I is a set of items for a grammar GI is a set of items for a grammar G
Every item in I is in Closure(I)
If A → α • B β is in Closure(I) and B → γ is a production in G
Then add B → • γ to Closure(I)

If it is not already there
Meaning

o When α is in the stack and B is expected next
o One of the B-production rules may be used to reduce the input to B

- May not be one-step reduction though

A l th l til it b dd dApply the rule until no more new items can be added

Building the AutomataBuilding the Automata

Goto function Goto(I,X)
X is a grammar symbolX is a grammar symbol
If A →α • X β is in I then A →α X • β is in Goto(I, X)

Let J denote the set constructed by this step
All it i Cl (J) i G t (I X)All items in Closure(J) are in Goto(I, X)
Meaning

If I is the set of valid items for some viable prefix γ
Then goto(I, X) is the set of valid items for the viable prefix γX

Building the AutomataBuilding the Automata

Augmented grammar
G is the grammar and S is the staring symbolG is the grammar and S is the staring symbol
Construct G’ by adding production S’ → S into G

S’ is the new starting symbol
E G S | β G’ S’ S S | βE.g.: G: S → α | β ⇒ G’: S’ →S, S → α | β

Meaning
The starting symbol may have several production rules and may be

d i th t i l’ d ti lused in other non-terminal’s production rules
Add S’ → S to force the starting symbol to have a single production
When S’ → S • is seen, it is clear that parsing is done

Building the AutomataBuilding the Automata

Given a grammar G
Step 1: augment GS ep : aug e G
Step 2: initial state

Construct the valid item set “I” of State 0 (the initial state)
Add S’ → • S into I

o All expansions have to start from here
Compute Closure(I) as the complete valid item set of state 0

o All possible expansions S can lead into
S 3Step 3:

From state I, for all grammar symbol X
Construct J = Goto(I, X)
Compute Closure(J)Compute Closure(J)

Create the new state with the corresponding Goto transition
o Only if the valid item set is non-empty and does not exist yet

Repeat Step 3 till no new states can be derivedRepeat Step 3 till no new states can be derived

Building the Automata -- ExampleBuilding the Automata Example

Grammar G:
S → ES → E
E → E + T | T
T → id | (E)

Step 1: Augment GStep 1: Augment G
S’ → S S → E E → E + T | T T → id | (E)

Step 2:
C t t Cl (I) f St t 0Construct Closure(I0) for State 0
First add into I0: S’ → • S
Compute Closure(I0)

S’ S S E

Expect to see S next

S won’t just appear
May have to see E first and

S’ → • S S → • E
E → • E + T E → • T
T → • id T → • (E)

y
reduce it to S using this rule

Building the Automata -- ExampleBuilding the Automata Example

Step 3
I1

I0:
S’ → • S S → • E1

Add into I1: Goto(I0, S) = S’ → S •
No new items to be added to Closure (I1)

I2

E → • E + T E → • T
T → • id T → • (E)

I2
Add into I2: Goto(I0, E) = S → E • E → E • + T
No new items to be added to Closure (I2)

II3
Add into I3: Goto(I0, T) = E → T •
No new items to be added to Closure (I3)

I

When E is moved to the stack (after a reduction),
these two are the possible handles
S → E • implies a reduction is to be done

o should be done if seeing Follow(S)
I4

Add into I4: Goto(I0, id) = T → id •
No new items to be added to Closure (I4)

E → E • + T implies + is expected to be the next inp

Building the Automata -- ExampleBuilding the Automata Example

Step 3
I

I0:
S’ → • S S → • E

I5
Add into I5: Goto(I0, “(”) = T → (• E)
Closure(I5)

E → • E + T E → • T

E → • E + T E → • T
T → • id T → • (E)

E → • E + T E → • T
T → • id T → • (E)

No more moves from I0

N ibl f I

After seeing (, we expect E next
E could be reduced from other

E-production rules
S t E d ti i th tNo possible moves from I1

I6
Add into I6: Goto(I2, +) = E → E + • T

So, put E-productions in the set

Closure(I5)
T → • id T → • (E)

No possible moves from I3 and I4

Building the Automata -- ExampleBuilding the Automata Example

Step 3
II7

Add into I7: Goto(I5, E) =
T → (E •) E → E • + T

No new items to be added to Closure (I)No new items to be added to Closure (I7)
Goto(I5, T) = I3

Goto(I5, id) = I4

Goto(I5, “(”) = I5

No more moves from I5

I88
Add into I8: Goto(I6, T) = E → E + T •
No new items to be added to Closure (I8)

Goto(I6, id) = I4(6,) 4

Goto(I6, “(”) = I5

Building the Automata -- ExampleBuilding the Automata Example

Step 3
II9

Add into I9: Goto(I7, “)”) =
T → (E) •

No new items to be added to Closure (I)No new items to be added to Closure (I9)
Goto(I7, +) = I6

No possible moves from I8 and I9

Building the Automata -- ExampleBuilding the Automata Example

S → S • I1 I6

S’ → • S

S → E •
E → E • + T

E → E + • T
T → • id
T → • (E)

S

E

+
I0

I2
E → E + T •T

I8S → • S
S → • E
E → • E + T
E → • T
T → • id

E → T •T

id

I3 (
id

T → id
T → • (E)

T → id •

T → (• E)

id

id(

T
I4

I7

+

()
E → • E + T
E → • T
T → • id
T → • (E)

(I5

T → (E •)
E → E • + T

E
7

T → (E) •)

I9()

Building the Automata -- ExampleBuilding the Automata Example

Stack Input Action
Follow(S) = {$}
Follow(E) = {+,), $}
F ll (T) {+) $}

More directly, you can see how
parsing works on the automata.

S → E

S → S •

E → E + • TS

I1

I2

I6

T

0 id + id $ S4

0 id 4 + id $ T→id,
Goto[0,T]=3

0 T 3 id $ E T

Follow(T) = {+,), $}

S’ → • S
S → • E
E → • E + T

S → E •
E → E • + T

T → • id
T → • (E)

E

T

+
I0

I2

I3 (
id

E → E + T •T

I8

0 T 3 + id $ E→T,
Goto[0,E]=2

0 E 2 + id $ s6

0 E 2 + 6 id $ S4 E → • E + T
E → • T
T → • id
T → • (E)

E → T •

T → id •

T

id

T
I4

+

(0 E 2 6 id $ S4

0 E 2 + 6 id 4 $ T→id,
Goto[6,T]=8

0 E 2 + 6 T 8 $ E→E+T,

T → (• E)
E → • E + T
E → • T
T → • id

id(

(I

T → (E •)
E → E • + T

E

I7

T → (E) •)

I9

Goto[0,E]=2

0 E 2 $ S→E,
Goto[0,S]=1

0 S 1 $ accept T → id
T → • (E)

(I5 I90 S 1 $ accept

Building the Parsing TableBuilding the Parsing Table

Action [M, N]
M statesM states
N tokens

Actions =
Shift i: shift the input token into the stack and got to state iShift i: shift the input token into the stack and got to state i
Reduce i: reduce by the i-th production α→β
Accept
ErrorError

Goto [M, L]
M states
L non-terminals

Goto[i, j] = x
Move to state Sx

Building the Action TableBuilding the Action Table

If state Ii has item A → α • a β, and
Goto(I a) = IGoto(Ii, a) = Ij

Next symbol in the input is a

Then Action[Ii, a] = Ij
Meaning: Shift “a” to the stack and move to state Ij

Need to wait for the handle to appear or to complete

If State Ii has item A → α •If State Ii has item A → α •
Then Action[S, b] = reduce using A → α

For all b in Follow(A)
Meaning: The entire handle α is in the stack, need to reduce
Need to wait to see Follow(A) to know that the handle is ready

E.g. S → E • E → E • + Tg
Current input can be either Follow(S) or +

Building the Action TableBuilding the Action Table

If state has S’ → S0 •
Then Action[S $] = acceptThen Action[S, $] = accept

Current stateCurrent state
The action to be taken depends on the current state

In LL, it depends on the current non-terminal on the top of the stack
In LR non terminal is not known till reduction is doneIn LR, non-terminal is not known till reduction is done

Who is keeping track of current state?
The stack

Need to push the state also into the stack
The stack includes the viable prefix and the corresponding state for
each symbol in the viable prefix

Building the Goto TableBuilding the Goto Table

If Goto(Ii, A) = Ij

Then Goto[i A] = jThen Goto[i, A] = j
Meaning

When a reduction X → α taken placep
The non-terminal X is added to the stack replacing α
What should the state be after adding X
This information is kept in Goto tableThis information is kept in Goto table

Building the Parsing Table -- ExampleBuilding the Parsing Table Example

Follow(S) = {$}
Follow(E) = {+,), $}

+ id () $ S E T

0 4 5 1 2 3

() { ,), }
Follow(T) = {+,), $}

0 4 5 1 2 3

1 Acc

2 6 S→E

3 E→T E→T E→T

4 T→id T→id T→id

5 4 5 7 3

6 4 5 8

7 6 9

8 E→E+T E→E+T E→E+T

9 T→(E) T→(E) T→(E)

LR Parsing AlgorithmLR Parsing Algorithm

Elements
Parser parsing tables stack inputParser, parsing tables, stack, input

Initialization
Append the $ at the end of the input
Push state 0 into the stack

On the top of the stack, it is always a state
It is the current state of parsing

LR Parsing AlgorithmLR Parsing Algorithm

Steps
If Action[x a] = yIf Action[x, a] = y

x is the current state, on the top of the stack
a is the input token

Then shift a into the stack and put y on top of the stackThen shift a into the stack and put y on top of the stack
If Action[x, a] = A → α

Note that a is in Follow(A)
Then

x is the current state, on the top of the stack
Pop the handle α and all the state corresponding to α out of the stack
y is the state on the top of the stack after popping
Check Goto table, if Goto[y, A] = z
Push A and then z into the stack

LR Parsing - ExampleLR Parsing Example
Stack Input Action

0 id + id $ S4+ id () $ S E T

0 id 4 + id $ T→id,
Goto[0,T]=3

0 T 3 + id $ E→T,
Goto[0 E] 2

0 4 5 1 2 3

1 Acc

2 6 S→E
Goto[0,E]=2

0 E 2 + id $ s6

0 E 2 + 6 id $ S4

0 E 2 + 6 id 4 $ T id

3 E→T E→T E→T

4 T→id T→id T→id

5 4 5 7 3
0 E 2 + 6 id 4 $ T→id,

Goto[6,T]=8

0 E 2 + 6 T 8 $ E→E+T,
Goto[0 E]=2

6 4 5 8

7 6 9

8 E→E+
T

E→E+T E→E+T
Goto[0,E]=2

0 E 2 $ S→E,
Goto[0,S]=1

0 S 1 $ accept

T

9 T→(E) T→(E) T→(E)

Rightmost derivation:
S E E T E id T id id id 0 S 1 $ acceptS ⇒ E ⇒ E + T ⇒ E + id ⇒ T + id ⇒ id + id

Reverse trace back:
Reduce left most input first.

SLR ParsingSLR Parsing

LR
L: input scanned from leftL: input scanned from left
R: traverse the rightmost derivation path

LR(0) = SLR(1)
The LR parser we discussed is LR(0)

0 in LR: lookahead symbol with the item (will be clear later)
LR(0) is also called SLR(1)() ()

Simple LR
1 in SLR: lookahead symbol

SLR and LL A → • Aa
A → A • a A → A a • I2SLR and LL

Example:
A → Aa | a

A → Aa
A → • a

A → a •
I0

I3

Stack Input ActionA → Aa | a
Follow(A) = {a, $}

a $ A

0 3 1

1 2

p

0 aaa$ S3

0a3 aa$ A→a,
Goto[0,A]=1

2 A→Aa A→Aa

3 A→a A→a

[,]

0A1 aa$ S2

0A1a2 a$ A→Aa
Goto[0,A]=1

Not LL
Left recursive grammar

But is SLR(1)

0A1 a$ S2

0A1a2 $ A→Aa
Goto[0,A]=1

Unclear accepting state
Incorrect state transitionBut is SLR(1)

First a got reduced to A
The remaining a’s got reduced with the already generated A (Aa)
In LR it is reduction based when seeing ‘a’ ‘A → a’ is the only

0A1 $

In LR, it is reduction based, when seeing a , A → a is the only
choice, after there are A, then reduce Aa by A → Aa

SLR and LL A → • aA A → a • AI1
A → aA • ISLR and LL

Example:
A → aA | a

A → • aA
A → • a A → a •

A → • aA
A → • a

I0

I1 I2

a
Potential shift-reduce conflict
shift: expect to see ‘a’A → aA | a

Follow(A) = {$}
a $ A

Stack InputAction

0 aaa$ S1

0a1 aa$ S1

shift: expect to see a
reduce: follow(A) only has $
⇒ no problem

0 1

1 1 A→a 2

2 A→aA

0a aa$ S

0a1a1 a$ S1

0a1a1a1 $ A→a
Goto[1,A]=2

Not LL(1)
Productions for A have left factors

[,]

0a1a1A2 $ A→aA
Goto[1,A]=2

0a1A2 $ same as above

Unclear accepting state
The input string is actually acceptable
If [0,$] is accept, will accept ε

But is SLR(1)
All ‘a’s got shifted to stack
Final ‘a’ seeing $ got reduced to ‘A’

0A? $

Final a , seeing $, got reduced to A
All ‘a’s in stack got reduced with newly generated ‘A’s

SLR and LLSLR and LL

Example:
S → Ax | By Follow(S) = {$}

Stack Input Action

0 aaax$ S3

0a3 aax$ S3S → Ax | By
A → aA | a
B → aB | a

Follow(S) = {$}
Follow(A) = {x}
Follow(B) = {y}

0a3a3 ax$ S1

0a3a3a3 x$ A→a
Goto[3,A]=6

S → • Ax
S → B

S → A • x

S → B • y

S → Ax •

S → By •

I0

I1

I

I4

I5

0a3a3A6 x$ A→aA
Goto[3,A]=6

0a3A6 x$ same as above
S → • By
A → • aA
A → • a
B → • aB
B → • a

A → a • A
A → a •
B → a • B
B → a •

A → aA •
I3

I2
5

I6

0A1 x$ S4

0A1x4 $ S→Ax

0S $B → • a B → a •
A → • aA
A → • a
B → • aB
B → • a

B → aB •

Potential reduce-reduce conflict
B t f ll (A) d f ll (B)

I7

Unclear accepting state
S does not appear at
the right hand sideB → • a

a
But follow(A) and follow(B)
are different

the right hand side
So, no Goto info

SLR and LLSLR and LL

Continue with the example:
S → Ax | ByS → Ax | By
A → aA | a
B → aB | a

Not LL(k)Not LL(k)
S → Ax and S → By, First(Ax) and First(By) are ‘a’
Even with large k, Firstk of both will have “aa…a”

I SLR(1)Is SLR(1)
No problem with A → aA and A → a, they lead to different states
No problem with A → a and B → a, just go back to the same state

D i i ‘ ’ ti l t hift d i t th t ko ⇒ During parsing, ‘a’ continuously got shifted into the stack
o When x or y appears, reduce

- By that time, it is clear which rule to use for reduction
- Follow(A) = {x}, if seeing x, reduce with A → aFollow(A) {x}, if seeing x, reduce with A → a
- Follow(B) = {y}, if seeing y, reduce with B → a

SLR and LLSLR and LL

Example:
S → Ax | By

Stack Input Action
S → Ax | By
A → Aa | a
B → Ba | a

0 aaax$ S3

0a3 aax$ Reduction
Multiple productions

S → A • x
S → A • a

S → Ax •

S → Aa •

Have to make decision
too soon,
right at the first ‘a’

I1
I4

I5

S → • Ax
S → • By
A → • Aa
A → • a

S → B • y
S → B • a

S → By •

S → Ba •

$

I0

I2
I6

I7
A → a
B → • Ba
B → • a

A → a •
B → a •

reduce-reduce conflict
Both A and B has ‘a’
in their follow sets

Follow(S) = {$}
Follow(A) = {x, a}
Follow(B) = {y, a}I3

SLR and LLSLR and LL

Continue with the example:
S → Ax | ByS → Ax | By
A → Aa | a
B → Ba | a

Not LLNot LL
S → Ax and S → By, First(Ax) and First(By) are ‘a’
Even with large k, Firstk of both A and B will have “aa…a” (A and
B are both in S’s productions)B are both in S s productions)

Not SLR either
Not SLR(k), for any k
Even with large k Follow of both A and B will have “aa a”Even with large k, Followk of both A and B will have aa…a

SLR and LL S (X
reduce-reduce conflictSLR and LL

Example:
S → (X | [Y

S → (• X
X → • A)
X → • B]
A → •
B

Both A and B has]/) in
their follow sets

S → (X | [Y
X → A) | B]
Y → A] | B)
A → ε

S → • (X
S → • [Y

B → •

S → [• Y
Y → • A]
Y → B)

Follow(S) = {$}
Follow(X) = {$}
Follow(Y) = {$}A → ε

B → ε

Not SLR(1)
I LL(1)

Y → • B)
A → •
B → •

Follow(A) = {],)}
Follow(B) = {],)}

Is LL(1)

([)] $First(A) = { ε }

The rules of each nonterminal have different first symbols
A → ε and B → ε are from different nonterminals

S S → (X S → [Y
X X → A) X → B]
Y Y → B) Y → A]
A A → ε A → ε

First(B) = { ε }
First(X) = { ε,),] }
First(Y) = { ε,),] }
First(S) = { (, [}

B B → ε B → ε

SLR Parser FamilySLR Parser Family

Consider grammar G
S → A b c | B b d

Follow(S) = {$}
Follow(A) = {b}
Follow(B) = {b}

S’ → • SS → A b c | B b d
A → a
B → a

S → • A b c
S → • B b d
A → • a
B → • a

A → a •
B → a •

a

G i SLR(2)

reduce-reduce conflict
b is in the follow sets
of both A and B

G is SLR(2)
Lookahead two characters will resolve the conflict
Follow2(A) = {bc}, Follow2(B) = {bd}
A ti [4 b] AAction[4, bc] = A → a
Action[4, bd] = B → a

SLR Parser FamilySLR Parser Family

Consider grammar G
S → A bk–1c | B bk–1dS → A b c | B b d
A → a
B → a

G is SLR(k) not SLR(k-1)G is SLR(k) not SLR(k-1)
Need to lookahead k characters in the Follow set
Followk–1(A) = {bk–1}, Followk–1(B) = {bk–1}
Follow (A) = {bk–1c} Follow (B) = {bk–1d}Followk(A) = {bk 1c}, Followk(B) = {bk 1d}

SLR and LRSLR and LR

Consider grammar G
S → L = RS → L = R
S → R
R → L
L → * R
L → id

SLR and LR I

shift-reduce conflict
the shift rule expect =

i i R’ f ll tSLR and LR

S → S • S → L = • R
L → • * R

S =

I1

I3
S → L = R •

R

I4

R → L • I5

= is in R’s follow set

* id = $ S L RS’ → • S
S → • L = R

S → L • = R
R → L •

L → * • R

R → • L
L → • id

S

L

=

I0

I2

I8I7

→ 5

*
id

L

0 7 9 1 2 6

1 Acc

2 R→L R→L

S → • L = R
S → • R
L → • * R
R → • L
L → • id

L → • R
L → • * R
R → • L
L → • id

*
L → * R •R

7

id
L

id*
3

3 7 9 5 4

4 S→L=R
S → R •

R
L → id •

I6

id

I9

5 R→L R→L

6 S→R

7 7 9 5 8
Follow(S) = {$}
Follow(L) = {=, $}

S → L = R
S → R
R → L
L → * R

8 R→*L R→*L

9 L→id L→id

Follow(R) = {=, $}L → R
L → id

SLR and LRSLR and LR

Grammar G has shift-reduce conflict
Not helpful by looking further ahead the Follow setNot helpful by looking further ahead the Follow set

Followk(L) = {$, =id$, =*id$, =**id$, …, =*…*id$, =*…*id,
=*…*}
Followk(R) = Followk(L)Followk(R) Followk(L)

⇒ This is not SLR(k)
o Further lookahead will not help with distinguishing

Followk(R) from Followk(L)k() k()

SLR and LRSLR and LR

What is the problem?
Lookahead information is too crudeLookahead information is too crude
Need to distinguish

If L → * R is from S ⇒ L = R ⇒ *R = R, then Follow(R) = {=, $}
If L * R i f S R L *R th F ll (R) {$}If L → * R is from S ⇒ R ⇒ L ⇒ *R, then Follow(R) = {$}

Solution:
Carry the specific lookahead information with the LR(0) item
The item becomes LR(1) item
Use the lookahead symbol(s) with the item to identify the correct
reduction rule to applypp y

Canonical LR Parsing
The parsing scheme based on LR(1) item

LR(1) ItemLR(1) Item

LR(1) Item of a grammar G
[A→α • β a][A→α • β, a]
A→α • β is an LR(0) item
a is the lookahead symbol (a terminal in Follow(A))
[A→α •, a] implies

S ⇒* δAγ ⇒ δαγ
a is in First(γ$)
I e “ ” f ll A i i ht e te ti l fI.e., “a” follows A in a right sentential form

When [A→α •, a] is in the state
⇒ Reduction (same as SLR)

But only if “a” is seen in the input string

Next, need to define Closure and Goto functions for LR(1)
itemsitems

Building the AutomataBuilding the Automata

Changes to Closure(I)
If A → α • B β is in Closure(I) and B → γ is a production in GIf A → α • B β is in Closure(I) and B → γ is a production in G
Then add B → • γ to Closure(I)

⇒
If [A → α • B β, a] is in Closure(I) and B → γ is a production in G
Then add [B → • γ, c] to Closure(I)

For all c, c ∈ First(βa)

Changes to Goto(I,X)
If A →α • X β is in I then A →α X • β is in Goto(I, X)

⇒⇒
If [A →α • X β, a] is in I then [A →α X • β, a] is in Goto(I, X)

Simply carry the lookahead symbol over

Building the Action TableBuilding the Action Table

If state has item [A → α • a β, b]
Add the shift action to the Action table (same as before)Add the shift action to the Action table (same as before)

If state has [S’ → S0 •, $]
Add accept to Action table (same as before)

If State Ii has item [A → α •, b]
Action[S, b] = reduce using A → α

Not for all terminals in Follow(A)Not for all terminals in Follow(A)
Only for all terminals in the lookahead part of the item

G t t bl t ti i th b fGoto table construction is the same as before

LR Parsing $LR Parsing

S’ → S, $
S → L = R, $
S R $

S’ → S , $

S → L = R, $
R → L , $

S → L = R, $
R → L, $
L → * R, $
L → id, $

S → L = R , $

S → R, $
L → * R, =
L → id, =
R → L, $
L → * R, $
L → id, $

S → R , $

R → L , $

No longer has conflict
$: reduce with R → L
=: shift

L → id, $

L → * R, $
R → L, $
L → * R, $
L → id, $

L → * R , $

L → id , $

R → L , =$

L → * R, =$
R → L, =$
L → * R, =$
L → id, =$

L → * R , =$

L → id , =$

LR ParsingLR Parsing

The parsing algorithm is the same for the LR family
Only the table is differentOnly the table is different

LR is more powerful
An SLR(1) grammar is always an LR(1), but not vice versa
LR(1)

Use one lookahead symbol in the item
LR(k) reduce-reduce ()

Use k lookahead symbols in the item
LR(2) grammar
S → A b c | B b d S’ → • S, $

S A b $

conflict in LR(1)
But no conflict in
LR(2)

S → A b c | B b d
A → a
B → a

SLR(2) also

S → • A b c, $
S → • B b d, $
A → • a, bc
B → • a, bd

A → a •, bc
B → a •, bd

aI0

I4
SLR(2) also

LR ParsingLR Parsing

LR is more powerful than SLR
But LR has a larger number of statesBut LR has a larger number of states

Higher space consuming
Common programming language has hundreds of states and
h d d f t i lhundreds of terminals
Approximately 100 X 100 table size

Can the number of states in LR be reduced?
Some states in LR are duplicated and can be merged

LALR
LookAhead LRoo ead
Try to merge states in LR(1) automata
When the core items in two LR(1) states are the same
⇒ th⇒ merge them

LALR Parsing $LALR Parsing

S’ → S, $
S → L = R, $
S R $

S’ → S , $

S → L = R, $
R → L , $

S → L = R, $
R → L, $
L → * R, $
L → id, $

S → L = R , $

S → R, $
L → * R, =
L → id, =
R → L, $
L → * R, $
L → id, $

S → R , $

R → L , $

Still no problem
The follow set is carried
along with the item
Which resolves the problem L → id, $

L → * R, $
R → L, $
L → * R, $
L → id, $

L → * R , $

Each pair of states in

p
of unwanted follow symbol

L → id , $

R → L , =$

Each pair of states in
these two blocks have
the same core items
⇒ Can be fully merged

L → * R, =$
R → L, =$
L → * R, =$
L → id, =$

L → * R , =$

L → id , =$

LALR ParsingLALR Parsing

Can merging states introduce conflicts?
Cannot introduce shift-reduce conflictCannot introduce shift-reduce conflict
May introduce reduce-reduce conflict

Cannot introduce shift-reduce conflict?
Assume: two LR states I1, I2 are merged into an LALR state I
If conflict, I must have items

[A → α •, a] and [B → β • aδ, b][,] [β ,]
o In fact, α and β have to be the same, otherwise, they won’t come to the

same state
If they are from different states, they are different core items, cannot
b d i Ibe merged into I
If I1 has [A → α •, a] and [B → α • bδ, c] and I2 has [A → α •, d]
and [B → α • bδ, e]

o To have a conflict we should have b = d or b = a shift reduce conflictso To have a conflict, we should have b = d or b = a, shift-reduce conflicts
were there in I1 and I2 already!

LALR ParsingLALR Parsing

Introducing reduce-reduce conflict?
S → aAd | bBd | bAe | aBeS → aAd | bBd | bAe | aBe
A → c B → c

I1: S’ → S •, $
I0:
S’ → • S, $
S → • aAd, $
S → • bBd $

I2:
S → a • Ad, $
S → a • Be $

, $
I3: S → aA • d, $

I4: S → aB • e, $
I5-9: A → c •, d/e

Merge I5 and I9

S → • bBd, $
S → • bAe, $
S → • aBe, $

S → a • Be, $
A → • c, d
B → • c, e

I6: I7: S → bA • e $

I5: A → c •, d
B → c •, e

B → c •, d/e

I6:
S → b • Ae, $
S → b • Bd, $
A → • c, e
B → • c d

I7: S → bA • e, $

I9 A

I8: S → bB • d, $
Reduce-reduce

Conflict
B → • c, d I9: A → c •, e

B → c •, d
LR(1)

LALR ParsingLALR Parsing

Another LALR example
S → CC First(C) = {c, d}S → CC
C → cC
C → d

First(C) {c, d}
First(S) = {c, d}
Follow(S) = {$}
Follow(C) = {c,d,$}

S’ → • S, $
S → • CC, $
C → • cC, c/d

S → C • C, $
C → • cC, $
C → • d $

S → S •, $ S → CC •, $
I0

I1 I2 I6

C → • d, c/d
C → • d, $

C → c • C, c/d
C → • cC, c/d
C → • d, c/d

C → cC •, c/d

I3
I4 C → c • C, $

C → • cC, $
C → • d, $

C → cC •, $

I7
I8

/$
/$
/$

/$

c d $ S C

0 3 5 1 2

1 Acc

C → d •, c/d

c

I5

C → d •, $

c

I9/$

2 3 5 6

3 3 5 4

4 C→cC C→cC C→cC

5 C→d C→d C→d

6 S→CC

LALR ParsingLALR Parsing

Delay error detection?
S → CC C → cC C → dS → CC, C → cC, C → d
Parse string ccd$

LR stack
0c3c3d5 seeing $ ⇒ reduce using C → d only if seeing {c d} not $0c3c3d5, seeing $ ⇒ reduce using C → d only if seeing {c, d}, not $
⇒ error

S’ → • S $ S C C $S → S • $ $I IS → • S, $
S → • CC, $
C → • cC, c/d
C → • d, c/d

S → C • C, $
C → • cC, $
C → • d, $

S → S •, $

C → c • C, c/d

S → CC •, $
I0

I1 I2

I3
I4 C → c • C, $

I7
I8

I6

,
C → • cC, c/d
C → • d, c/d

c

C → cC •, c/d
C → c C, $
C → • cC, $
C → • d, $

c

C → cC •, $

C → d •, c/d I5 C → d •, $ I9

LALR ParsingLALR Parsing

Delay error detection?
LALR stackLALR stack

0c3c3d5, seeing $ ⇒ reduce using C → d, goto 4 (0c3c3C4)
0c3c3C4, seeing $ ⇒ Reduce by C → cC, goto 4 (0c3C4)
0c3C4 seeing $ ⇒ Reduce by C → cC goto 2 (0C2)0c3C4, seeing $ ⇒ Reduce by C → cC, goto 2 (0C2)
0C2, seeing $ ⇒ error, only allow seeing c, d, C

S’ → • S, $ S → C • C $S → S • $ S CC $I1 I2 IS → S, $
S → • CC, $
C → • cC, c/d
C → • d, c/d

S → C • C, $
C → • cC, $
C → • d, $

S → S , $

C → c • C, c/d/$

S → CC •, $
I0

I1 I2

I3
I4

I6

C d /d/$

C → • cC, c/d/$
C → • d, c/d/$

c

C → cC •, c/d/$

C → d •, c/d/$
I5

LALR ParsingLALR Parsing

LALR
Can also be constructed using SLR procedureCan also be constructed using SLR procedure
But add lookahead symbols

SLR, LR, LALR
LR is most powerful and SLR is least powerful
LALR(1) is most commonly used

All reasonable languages are LALR(1)g g ()
Has the same number of states as SLR(1)

Grammar Class HierarchyGrammar Class Hierarchy

Bottom-up Parsing -- SummaryBottom up Parsing Summary

Read textbook Sections 4.5-4.6
Bottom up ParsingBottom-up Parsing

Handle and viable prefix
SLR parsing

SLR(1) = LR(0)
SLR(k)

Canonical LR Parsing
LR(1)
LR(k)

LALR

